4 research outputs found

    LBP-CA: A Short-term Scheduler with Criticality Arithmetic

    Get PDF
    © 2022 The Author(s). This is an open access conference paper distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/In safety-critical systems a smooth degradation of services is a way to deal with resource shortages. Criticality arithmetic is a technique to implement services of higher criticality by several tasks of lower criticality. In this paper, we present LBP-CA, a mixed-criticality scheduling protocol with smooth degradation based on criticality arithmetic. In the experiments we show that LPB-CA can schedule more tasks than related scheduling protocols (BP and LBP) in case of resource shortage, minimising the negative effect on low-criticality services. This is achieved by considering information about criticality arithmetic of services

    ATMP-CA: Optimising Mixed-Criticality Systems Considering Criticality Arithmetic

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)Many safety-critical systems use criticality arithmetic, an informal practice of implementing a higher-criticality function by combining several lower-criticality redundant components or tasks. This lowers the cost of development, but existing mixed-criticality schedulers may act incorrectly as they lack the knowledge that the lower-criticality tasks are operating together to implement a single higher-criticality function. In this paper, we propose a solution to this problem by presenting a mixed-criticality mid-term scheduler that considers where criticality arithmetic is used in the system. As this scheduler, which we term ATMP-CA, is a mid-term scheduler, it changes the configuration of the system when needed based on the recent history of deadline misses. We present the results from a series of experiments that show that ATMP-CA’s operation provides a smoother degradation of service compared with reference schedulers that do not consider the use of criticality arithmeticPeer reviewe

    Proceedings of Abstracts, School of Physics, Engineering and Computer Science Research Conference 2022

    Get PDF
    © 2022 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Plenary by Prof. Timothy Foat, ‘Indoor dispersion at Dstl and its recent application to COVID-19 transmission’ is © Crown copyright (2022), Dstl. This material is licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: [email protected] present proceedings record the abstracts submitted and accepted for presentation at SPECS 2022, the second edition of the School of Physics, Engineering and Computer Science Research Conference that took place online, the 12th April 2022

    Artificial Ecosystem-Based Optimization with Dwarf Mongoose Optimization for Feature Selection and Global Optimization Problems

    No full text
    Meta-Heuristic (MH) algorithms have recently proven successful in a broad range of applications because of their strong capabilities in picking the optimal features and removing redundant and irrelevant features. Artificial Ecosystem-based Optimization (AEO) shows extraordinary ability in the exploration stage and poor exploitation because of its stochastic nature. Dwarf Mongoose Optimization Algorithm (DMOA) is a recent MH algorithm showing a high exploitation capability. This paper proposes AEO-DMOA Feature Selection (FS) by integrating AEO and DMOA to develop an efficient FS algorithm with a better equilibrium between exploration and exploitation. The performance of the AEO-DMOA is investigated on seven datasets from different domains and a collection of twenty-eight global optimization functions, eighteen CEC2017, and ten CEC2019 benchmark functions. Comparative study and statistical analysis demonstrate that AEO-DMOA gives competitive results and is statistically significant compared to other popular MH approaches. The benchmark function results also indicate enhanced performance in high-dimensional search space.Funding Agencies|Linkoeping University</p
    corecore